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LETTER TO THE EDITOR 

Guided replication of random chains: a new Monte 
Carlo method 

T Garel and H Orland 
Service de Physique ThCoriquet de Saclay, F-91191 Gif-sur-Yvette Cedex, France 

Received 27 March 1990 

Abstract. We introduce a new Monte Carlo method to study random chains. The method 
uses (i) a link by link growth procedure of the chain, (ii) a chain replication procedure 
based on Boltzmann weights. We apply it to various cases in two and three dimensions 
(pure self-avoiding walk, repulsion between nearest-neighbour links and attraction between 
the chain extremities, etc). When the competition (or frustration) between the different 
interaction terms increases, the chain may get trapped in local minima: to overcome this 
problem, we introduce a guiding field (or potential) { + , ( r ) } .  Step (ii) is now performed in 
the presence of this guiding field, which makes the chain population temporarily non- 
Boltzmannian. However, when the chain is completed, the final population obeys again 
the Boltzmann law. We study simple cases, where { + , ( r ) }  may be chosen on physical 
grounds. 

There are various physical problems where random chains are important. Among 
others, polymers and copolymers [ 11, the travelling salesman problem [2], two- 
dimensional interfaces in random Ising magnets [3] or some models of proteins [4]. 
Note here that we take the word ‘random’ in a very general sense. In some of these 
systems such as random heteropolymers or proteins, a serious problem arises in 
numerical simulations: the complexity of their phase space. The chain may easily get 
trapped, at low temperature, in local minima. To reach a global minimum may then 
require large movements of the chain, which will be exponentially unfavourable in the 
usual single move Monte Carlo method [ 5 ] .  To get (partially) rid of this local minimum 
problem, we propose in this letter a new Monte Carlo method: this method is inspired 
by quantum path integral Monte Carlo techniques [ 6 ]  and relies heavily on the 
chain-like (linear) structure of the above-mentioned systems. For definiteness, we 
consider here the problem of a random chain of N + 1 molecules: molecules i (at ri) 
and j (at 5 )  interact through a two-body potential uij( r,, r j ) ,  where i, j = 0, 1 , 2 , .  . . , N. 
The method, which makes use both of a link by link growth of the chain and of a 
chain replication procedure, is also detailed. The pure self-avoiding walk (SAW) is 
quoted in two and three dimensions, in excellent agreement with the existing results. 
When the competition between the {uij(ri, r j ) }  increases, we introduce a bias in the 
replication procedure, namely a guiding field {4i(r)}.  The presence of this field makes 
the replication procedure temporarily non-Boltzmannian, but the linear structure of 
the chain implies that, once the chains are completed, the chain population is distributed 
according to a Boltzmann law. Later we present some choices of { ~ $ ~ ( r ) }  for simple 
situations; more complex chains require more subtle choices of the guiding field. 
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We illustrate our method on a very schematic lattice model. We will consider a 
linear chain of N + 1 molecules linked by bonds of length a = 1. Each molecule is 
labelled by an index i E [0, . . . , N I ,  and its position belongs to a d-dimensional lattice 
2. Each molecule i may be subjected to an external potential U f ( r )  and pairs of 
molecules i and j interact through a two-body interaction u,,(rf, rJ) ,  which may be of 
any range, and may include the self-avoidedness restriction. Higher-order interactions 
may be easily included. We assume that the origin of the chain, i.e. molecule 0 is fixed 
at the origin 0 of the lattice. The partition function of the chain reads: 

N N 

z =  { ~ , E Y ]  c 1 = 1  n S ( / ~ l - ~ , - l l - l ) . e x P ( - P  ,=O c Wr1)-P O C f < J G N  c u , , ( r 1 4 ) ) *  ( l a )  

Other quantities of interest, such as the end-to-end probability distribution may be 
similarly defined. 

In ( la ) ,  we assumed that two consecutive molecules are covalently bound, and 
that the zero of energy is the sum of such pairwise covalent energies. Then, we may take 

u*,,+1(r, r’) = 0 (1b) 

Many generalisations of this model can be treated by our method, and will be 

The idea is to generate a population AN of chains of length N, with Hamiltonian 
mentioned in the conclusion. 

given by: 

in which the number of chains of given energy E is proportional to its Boltzmann 
weight e-pE. This is done inductively, by growing the chains, and replicating or deleting 
them so as to generate correct Boltzmann weights. Let us illustrate the method by 
assuming that all one-body potentials are absent, and that the two-body potentials 
contain a self-avoiding part. 

We start with a population A. of chains of zero length, that is with all molecules 
at the origin. We call them seeds. From each seed, we generate molecule number one 
by drawing its position at random, according to the weight 6((r l  - rol - l)/z, where z 
denotes the coordination number of the lattice. We will have again AI = A. chains of 
length 1, with (approximately) A o / z  chains in each direction. For each of these chains, 
we draw molecule 2 at random, according to the weight ~ 3 ( l r ~ - r ~ l - l ) / z .  We then 
accept this point with a weight 

w 2 ( 4 r 0 ,  rl)  = e x p ( - ~ u ~ ~ ( r ~ ,  r 2 ) ) .  
As a consequence, all chains such that r2 = ro = 0 will be rejected, whereas those with 
r2 # 0 will be accepted with weight w 2 .  For general vi,, the Boltzmann weight w2 = 
exp(-puo2(ro, r 2 ) )  may be small or larger than 1. In order to conserve Boltzmann 
distributions in the population of chains, we must thus replicate each newly generated 
chain with a weight w 2 .  If w2 < 1, this is done in the usual way: draw a random number 
r uniformly between 0 and 1. If r < w 2 ,  keep the chain the population, otherwise, 
remove it from the population. If w2 > 1, define the integer part n of w2 as n = Int w 2 ,  
and the fractional part p = w2 - n. In order to conserve Boltzmann statistics, replicate 
n times the chain, that is, introduce n such chains in the population. Then, replicate 
the chain an additional time with weight p c 1. (This is done according to the procedure 
defined above.) 
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The procedure goes on by induction. Assume that, at step n + 1, we have constructed 
M , ( r o , .  . . , r , )  chains { r o , .  . . , rn} .  The total number of such chains of length n is A,. 
For each chain, we draw a point r,+l according to the weight 8(/r,+l - rnl - l ) /z ,  and 
compute the Boltzmann weight 

As previously, we replicate this particular chain with the weight w , + ~  so that in the 
total population, of chains of length n + 1, its number is 

M,+,(rO,.  . , r n + l ) =  w,+i(r,+iIro,. . ., r n ) . M n ( * o , .  . , r , )  (4a) 
At completion of the chain, we have a population of AN chains, such that the 

probability to find a chain of given energy in the ensemble is given by its Boltzmann 
weight. Indeed, from (4a), we get 

M ~ ( r o ,  - * .  , r N ) = w N ( r N J r o , .  a . ,  r N - i ) . ~ , ~ - i ( r ~ - i J r o - r N - 2 ) .  . wi(riIro)*Ao (4b) 
so that from (3) 

An obvious problem that occurs with the above method is the exponential growth 
or decay of the population A,. For instance, in the pure SAW case, a chain is accepted 
with probability 1 if it is self-avoiding and rejected otherwise. It is easily seen then 
that the population A, will decay exponentially, and the process will die out rapidly. 
On the other hand, in the case of self-attraction, it is similarly seen that the population 
will grow exponentially, thus overwhelming very rapidly the capacity of the computer. 

To overcome this drawback, it is easy to see that one can rescale all weights w, at 
stage n, by the same scaling factor g,. The final result is still a Boltzmann distributed 
population. Indeed, (4c) is replaced by: 

The scaling factor gn can be adjusted automatically to keep approximately constant 
all populations A,, so as to take best advantage of the capacity of the computer. 

We have tested our method on two- and three-dimensional SAWS. Since we were 
not trying to extract high precision results, but rather validate the method on thoroughly 
studied systems, we have used samples of Ao= 15 000 chains of lengths up to 100 
links. The index v, extracted both from the radius of gyration and from the end-to-end 
distance is in good agreement with existing data. Indeed, in d = 2 ,  we obtain v = 
0.75 f 0.01 and in d = 3, v = 0.59 f 0.01 [ 5 ] .  

As we have seen, the method generates a population of chains distributed with 
Boltzmann weights. However, nothing guarantees that for finite chain populations, the 
whole phase space can be visited. In fact, it is obvious that this is not true: the method 
is non-ergodic, for finite populations. For instance, if we use the above procedure at 
low temperature, in the presence of a non-trivial potential uu(r, r’) ,  each new link n 
will be dominantly added so as to minimise the energy up to link n (see equation (3)) .  
Therefore, at low temperature, our method essentially amounts to the well known 
‘Greedy algorithm’ [7]. 

This method provides local minima, and gives an upper bound to the total free 
energy of the chain. The basic reason for this drawback is that in our procedure, at 
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each step, the population of the chains is Boltzmannian, whereas it should be so only 
for the completed chains. 

In order to cure this problem, by analogy with quantum Monte Carlo methods, we 
introduce a guiding field qbi( r )  for each link i. The field &( r )  can be chosen arbitrarily, 
provided it satisfies the boundary condition 

This guiding field is used to calculate new replication weights. The replication 
weight wn+l ( rn+ l l rO , .  . . , r n )  we use is now given by 

Wn+l(rn+l(rO,. . . , r n )  

= gn+l * * * g, * exP~--(4n+,(rn+l) - 4 n ( r n ) ) l  

( 6 b )  
which together with the boundary condition (5) gives back the original Boltzmann 
weights. However, after n steps, the population of a given configuration { r o , .  . . , r , }  
is no longer Boltzmannian: 

This guiding field 41(r ) ,  thus allows us to escape from the 'Greedy algorithm', and 
permits us to explore various regions of phase space. Note that the ( r )  may depend 
on temperature. The choice of 4 # ( r )  must be guided by physical considerations. 

For instance, if we know that at low temperature the chain is frozen in a configuration 
{ p o ,  . . . , p N } ,  a natural choice for the guiding field + , ( r )  is a field strongly attractive 
around point p I .  

One possible application of the method would be to use physical information (e.g. 
crystallographic, NMR, NOE [4], etc) to design a good guiding field. Next, we illustrate 
the choice of the guiding field on a simple example, that of a closed SAW. 

To illustrate the use of the guiding field, we have studied a simple problem, namely 
a chain with links numbered from 0 to N, with the following two-body interaction 

0 if lr=r'l> 1 

{+a if ) r  - r ' )  = 0 
0 6  i < i + l < j s n  vv(r,  r ' ) =  1 if l r - r t I = l  (7a) 

if ( i ,  j )  f (0, N )  and 
0 if Ir-r ' l> 1 

if l r - r ' [ =  1 
Ir - r'I = 0. 

The range of the interaction is one lattice spacing. It contains a self-avoiding part. 
In addition, the molecules of the extremities attract each other (at distance 1) with 
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energy eo = -10, whereas any other pairs of molecules repel1 each other (at distance 
1) with energy E = +l. 

The ground states are ‘loops’, i.e. chains where the extremities are exactly at distance 
1, whereas all other pairs of molecules are at distances larger than 1. The ground state 
energy is Eo = -10. 

Due to the intermolecular repulsion, the chain will be extremely swollen. 
It is known [ 11 that the probability of return to the origin for such a chain goes to 

zero as N + +a. Therefore, if 4 =0, one expects that the ‘growing and replication 
procedure’ will miss the ground states of the chain. We have studied the model 
numerically. Using an initial population of A. = 1000 ystems, we have found that for 
chains up to N,,, = 31, the method correctly finds ground states. However, for N > 31, 
the method generates only chains with zero energy and misses all ground states. With 
an initial population of A, = 100, it is possible to find loops only up to N,,, = 15. 

To try to generate larger loops, we have tried the following guiding field: 

with 4o = 4 N  = 0, d = 3 is the space dimension, and vo is a parameter which we take 
to be the Flory exponent v. 

As one moves along the chain, molecules feel more and more attracted towards 
regions which are close to the origin. Furthermore, the guiding field starts to be felt 
by molecules with i of order N where they are at distances of order i ” 0  from the origin. 
Thus, the guiding field introduces a bias of the molecules along the chain, which allows 
us to explore regions of phase space where the extremities are close one to another. 

With an initial population of Ao= 100, the method finds correctly ground states 
up to sizes N,,, = 71. 

Therefore, the guiding field helps the chain to find its ground state in a very efficient 
way. We have tried other guiding fields successfully, but do not have, at present, a 
systematic way to generate them. However, for the present problem, all guiding fields 
which are physically reasonable seem to work. 

We have presented a new Monte Carlo method to generate random chains according 
to Boltzmann weights. The method consists in growing the chains link by link, and 
replicating them with weights which incorporate both their energy and a well chosen 
guiding field 4 i ( r ) .  We find that the method enables one to find correct ground states 
for chains, even for very unprobable events. 

The method can be generalised very easily to the following cases. 
(i) Chains in a continuous space. 
(ii) Variable monomer length. 
(iii) Curvature and torsional energies. 
(iv) Three- and more-body interactions. 
The main motivation of the present method is the determination of protein shapes. 

The method seems to allow for all generalisations necessary to achieve that goal, and 
we are presently investigating this problem. 
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